

rid-forming Wind Ture (1996)

without the inverters!

Seoff Henderson Vahan Ge

SyncWind Power Ltd & Weiha

Damian Flynn & NRE Grid-forming Wind Turbines: without the inverters!

Geoff Henderson Damian Flynn & William Mendieta

University College Dublin

Vahan Gevorgian & Weihang Yan NREL

S M Shafiul Alam Idaho National Laboratory

Type 5 Wind Turbine Technologies: Three Main Candidates Compared e Technologies:

Mes Compared

Vahan Gevorgian

& Weihang Yan

NREL **5 Wind Turbine Tecl
Three Main Candidates Con**
Seoff Henderson Vahan General SyncWind Power Ltd & Weiha
Damian Flynn &

Geoff Henderson Damian Flynn & William Mendieta University College Dublin

Vahan Gevorgian NREL

S M Shafiul Alam Idaho National Laboratory

Contents

- **4. Contents
1. Background: why does the industry need Type 5?
2. The three Type 5 candidates description & history: Contents

1. Background: why does the industr

2. The three Type 5 candidates - desc

• SyncWind TLG-LVS

• Voith Windrive**
- **2.** Contents
2. The three Type 5 candidates description & history:
2. The three Type 5 candidates description & history:
3. SyncWind TLG-LVS 1. Background: why does the industry
2. The three Type 5 candidates - desc
• SyncWind TLG-LVS
• Voith Windrive
• Full hydrostatic drive
3. NREL recent research
4. University College Dublin (UCD) re
-
- Voith Windrive
- Full hydrostatic drive
-
- 2. The three Type 5 candidates description & history:

 SyncWind TLG-LVS

 Voith Windrive

 Full hydrostatic drive

3. NREL recent research

4. University College Dublin (UCD) recent research

5. LCOE Comparisons 3. Voith Windrive

1. Voith Windrive

1. College Dublin (UCD)

1. University College Dublin (UCD)

1. LCOE Comparisons

1. COC Comparisons • Full hydrostatic drive
3. NREL recent research
4. University College Dubl
5. LCOE Comparisons
6. Conclusion
-
-

Why does the industry need Type 5?

- **EXECUTE: WHY does the industry need Type 5?**
• Type 5 turbines drive directly grid-connected synchronous generators,
which are grid-forming just like conventional power plants which are grid-forming just like conventional power plants **EXECUTE:**

• Type 5 turbines drive directly grid-connected synchronous generators,

• Historically, system strength from conventional power plants (>3 pu

• Historically, system strength from conventional power plants (>3 **Example 3 and Type 3 and Type 3 and Type 4 wind turbines have inverters capable of typically.**

• Type 5 turbines drive directly grid-connected synchronous generators, which are **grid-forming** just like conventional power Type 5 turbines drive directly grid-connected synchronous generators,
which are **grid-forming** just like conventional power plants
Historically, **system strength** from conventional power plants (>3 pu
current capability, i • Type 5 turbines drive directly grid-connected synchronous generate
which are **grid-forming** just like conventional power plants
• Historically, **system strength** from conventional power plants (>3 p
current capability, i
- current capability, inertia etc) has ensured system stability
- Historically, **system strength** from conventional power plants (>3 pu

current capability, inertia etc) has ensured system stability

 Type 3 and Type 4 wind turbines have inverters capable of typically

only 0.4 pu and current capability, inertia etc) has ensured system stability
Type 3 and Type 4 wind turbines have inverters capable of typically
only 0.4 pu and 1 pu current respectively, and no synchronous inertia
System strength has de • Type 3 and Type 4 wind turbines have inverters capable of typic
only 0.4 pu and 1 pu current respectively, and no synchronous i
• System strength has degraded because of wind and solar inver
based resources (IBRs)
• As r
- based resources (IBRs)
-
-

IEEE 2800:2022: a driver for Type 5 wind power FRING FINITE 19800:2022: a driver for Type

wind power

Fundamental problem arises because of "complex inter-

dependencies between IBR and power system characte

- dependencies between IBR and power system characteristics".
- IEEE 2800:2022: a driver for Type 5
• Wind power
• Fundamental problem arises because of "complex inter-
• IEEE 2800:2022 calls sync-cons: "presently the primary solution for
• ddding system strength because of multiface adding system strength because of multifaceted benefits including large **Capability of Support Current** Current, inertia and power system characteristics".

• IEEE 2800:2022 calls sync-cons: "presently the primary solution for
 adding system strength because of multifaceted benefits including
- Australia, causing significant financial pain and planning uncertainty to wind farm developers there • IEEE 2800:2022 calls sync-cons: "presently the primary solution adding system strength because of multifaceted benefits including la capability to supply fault current, inertia and voltage support capability. Such mitiga
-

Sync-con Mandates: Early Adopters **EXECTE SYNC-CON Mandates: Early Adoptor**
Early adopters still rare - market characteristics:
• high penetration of non-synchronous wind and solar
• low interconnector strength **• Sync-con Mandates: Early Adopt**
Early adopters still rare - market characteristics:
• high penetration of non-synchronous wind and solar
• low interconnector strength

- -
	-
- **Sync-con Mandate**
 Early adopters still rare market of

 high penetration of non-synchronou

 low interconnector strength

South Australian experience foll • Sync-con Mandates: Early Adopters

• Early adopters still rare - market characteristics:

• high penetration of non-synchronous wind and solar

• South Australian experience - following the 2016 black-out and

despite th despite the much-publicised Tesla battery installation: • **Sync-con Mandates: Early Adopters**

Early adopters still rare - market characteristics:

• high penetration of non-synchronous wind and solar

• low interconnector strength

South Australian experience - following the 2 Early adopters still rare - market characteristics:

• high penetration of non-synchronous wind and solar

• low interconnector strength

South Australian experience - following the 2016 black-out and

despite the much-pub
	-
	- A\$169 million (~US\$200/kW)
- high penetration of non-synchronous wind and solar
• low interconnector strength
• South Australian experience following the 2016 black-out and
despite the much-publicised Tesla battery installation:
• 250 MW of gas tu to procure "10,000 MVA.s" of grid support services including inertia, reactive power and short-circuit contribution despite the much-publicised Tesla battery installation:
• 250 MW of gas turbines were installed in South Australia, then
• 516 MW (continuous rating) of sync-cons were installed at cost of
A\$169 million (~US\$200/kW)
• Iris
- expense of the grid company, not (yet) the wind and solar farms

The three Type 5 candidates - history **• The three Type 5 cane
• Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW
• renewed interest since 2000 by hyd** The three Type 5 candidates - history
Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW unit in 1970s
• renewed interest since 2000 by hydrostatic system suppliers
• enhancing efficiency and control

B B B

CINREI

-
- **The three Type 5 candidates history**
Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW unit in 1970s
• renewed interest since 2000 by hydrostatic system suppliers
enhancing efficiency and control
SynoWind TLG L enhancing efficiency and control → **The three Type 5 candi**
• Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW u
• renewed interest since 2000 by hydros
• SyncWind TLG-LVS
• 34 years since 1990 TLG prototype in l
• >1000 turbine-vears at 0.5 MW The three Type 5 candidates - history

Full hydrostatic drive

• Sir Henry Lawson-Tancred's 100 kW unit in 1970s

• renewed interest since 2000 by hydrostatic system suppliers

enhancing efficiency and control

SyncWind TL Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW unit in 1970s
• renewed interest since 2000 by hydrostatic system suppliers
• enhancing efficiency and control
SyncWind TLG-LVS
• 34 years since 1990 TLG prototype
- -
	-
- Full hydrostatic drive
• Sir Henry Lawson-Tancred's 100 kW unit in 1970s
• renewed interest since 2000 by hydrostatic system suppliers
• enhancing efficiency and control
SyncWind TLG-LVS
• 34 years since 1990 TLG prototype and import, fast frequency control, benign "sacrificial element" in pole-slip event and broad-band VS ability of new LVS system • SyncWind TLG-LVS
• SyncWind TLG-LVS
• 34 years since 1990 TLG pre
• >1000 turbine-years at 0.5 M
• demonstrated system streng
and import, fast frequency co
pole-slip event and broad-ba
• Voith Windrive
• Dewind commercia SyncWind TLG-LVS
• 34 years since 1990 TLG prototype in Devon, England
• >1000 turbine-years at 0.5 MW scale, 46 MW farm still runs in
• demonstrated system strength in grid fault, steady VAR expore
and import, fast freque • 34 years since 1990 TLG prototype in Devon, England
• >1000 turbine-years at 0.5 MW scale, 46 MW farm stil
• demonstrated system strength in grid fault, steady VAF
and import, fast frequency control, benign "sacrificial
- -
	-

General Features of Type 5 Grid-forming Turbines **Ceneral
• Features in common:**
• no inverters **General I

Type 5 Grid-form Contains Contains Contains:**

• no inverters

• mechanical VS so turbine spectron created in lacked to **General Features of

Type 5 Grid-forming Turbine**

Features in common:

• mechanical VS so turbine speed can vary

• generator speed is locked to grid frequency

— constant sensuring speed radiuses dijus traje terms for **General Features of

Type 5 Grid-forming Turbines**

Features in common:

• no inverters

• generator speed is locked to grid frequency

• constant generator speed reduces drive-train torque trans

(no generator accelerati

- -
	-
	-
- **Type 5 Grid-forming Turbines**

 no inverters

 mechanical VS so turbine speed can vary

 generator speed is locked to grid frequency

 constant generator speed reduces drive-train torque transients

(no generator ac (no generator accelerations hence no inertial term) • Features in common:
• no inverters
• mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-train torque transie
(no generator accelerations hence n • no inverters
• mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-tra
• (no generator accelerations hence no inert
Distinguishing features of t • mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-train torque transi
(no generator accelerations hence no inertial term)
Distinguishing featur • generator speed is locked to grid frequency

• generator speed is locked to grid frequency

• constant generator speed reduces drive-train torque transients

(no generator accelerations hence no inertial term)

Distingui • constant generator speed is looked to gila inequently

• constant generator speed reduces drive-train torque transi

(no generator accelerations hence no inertial term)

Distinguishing features of the three candidates:

- -
	-
	-
	-

Full hydrostatic drive description

-
- **Example 15 Full hydrostatic drive description**
• Continuously variable hydrostatic transmission, no gearbox
• Fixed displacement radial piston pump and variable displacement axial piston motor both rated 100% wind turbing **Full hydrostatic drive description**
• Continuously variable hydrostatic transmission, no gearbox
• Fixed displacement radial piston pump and variable displace-
• Accumulator to smooth power output and turbine loads **Full hydrostatic drive description**
Continuously variable hydrostatic transmission, no gearbox
Fixed displacement radial piston pump and variable displace-
ment axial piston motor both rated 100% wind turbine power
Accumu **• Accumulator Continuously variable hydrostatic transmission, no gearbox**
• Continuously variable hydrostatic transmission, no gearbox
• Fixed displacement radial piston pump and variable displacement axial piston motor b • Continuously variable hydrostatic transmission, no gearbox
• Fixed displacement radial piston pump and variable displacement axial piston motor both rated 100% wind turbine power
• Accumulator to smooth power output and
-
-

- **1d's TLG-LVS System**
• Hydrostatic torque reaction at final
• Torque limiting (TL) pump/motor is differential stage of main gearbox
	- **10's TLG-LVS System**
• Hydrostatic torque reaction at final
differential stage of main gearbox
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item fixed displacement radial piston
	- **1d's TLG-LVS System**
• Hydrostatic torque reaction at final
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from protecting main gearbox from electrical faults, pole-slip etc • Hydrostatic torque reaction at final
differential stage of main gearbox
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from
electric • Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from
electrical faults, pole-slip etc
• Torque limiting is provided by a relief
valve w • Small TL pump can be sacrificial item,

	protecting main gearbox from

	• electrical faults, pole-slip etc

	• Torque limiting is provided by a relief

	• LVS pump is variable displacement

	• LVS pump is variable displacemen
	- valve with controllable setpoint France protecting main gearbox from

	• Torque limiting is provided by a relief

	• Torque limiting is provided by a relief

	• LVS pump is variable displacement

	• LVS pump is variable displacement

	• Both rated 5% wind turb
	- axial piston, electric motor driven
-
- and turbine loads

- **1d's TLG-LVS System**
• Hydrostatic torque reaction at final
• Torque limiting (TL) pump/motor is differential stage of main gearbox
- **10's TLG-LVS System**
• Hydrostatic torque reaction at final
differential stage of main gearbox
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item fixed displacement radial piston
- **1d's TLG-LVS System**
• Hydrostatic torque reaction at final
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from
electrical faults, po protecting main gearbox from electrical faults, pole-slip etc • Hydrostatic torque reaction at final
differential stage of main gearbox
• Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from
electric • Torque limiting (TL) pump/motor is
fixed displacement radial piston
• Small TL pump can be sacrificial item,
protecting main gearbox from
electrical faults, pole-slip etc
• Torque limiting is provided by a relief
valve w • Small TL pump can be sacrificial item,
protecting main gearbox from
electrical faults, pole-slip etc
• Torque limiting is provided by a relief
valve with controllable setpoint
• LVS pump is variable displacement
axial pi
- valve with controllable setpoint protecting main gearbox from

electrical faults, pole-slip etc

• Torque limiting is provided by a relief

valve with controllable setpoint

• LVS pump is variable displacement

axial piston, electric motor driven

• Both
- axial piston, electric motor driven
-
- and turbine loads

46 MW Synchronous Net Energy: 1505.10 GWh

Number Available: 86

Number Generating: 81

MeanWindspeed: 18.5 m/s **FREL DESCRIPS A SYNCHRONOUS**

FREL DESIGN WIND Farm

Proven design at high wind New Zealand site

Proven design at high wind New Zealand site

Proven design at high wind New Zealand site

Proven the Star Metal Design Con • 18 years operation and still going **EREL CONSIDER 18 16 MW Synchronous**

• Proven design at high wind New Zealand site

• 18 years operation and still going

• >1000 turbine-years track record

• Type certification

• IEC 61400-1:2008 (Edition 3) **EREL FOR AG MW Syn

IREL FOR AG MW Syn

• Proven design at high wind No

• 18 years operation and still go

• >1000 turbine-years track rec

• Type certification

• IEC 61400-1:2008 (Edition

• Class 1A** • **Wind Farm**
• **Wind Farm**
Proven design at high wind New Zealan
18 years operation and still going
• 1000 turbine-years track record
Type certification
• IEC 61400-1:2008 (Edition 3)
• Class 1A

- **Wind

Proven design at high wind I

18 years operation and still (

>1000 turbine-years track re

Type certification

 IEC 61400-1:2008 (Editio

 Class 1A**
-
-
- -
	-

T002 ON AutoGen PSD:No 487 kW T003 ON AutoGen PSD:No 425 kW T004 ON AutoGen PSD:No 530 kW T005 ON AutoGen PSD:No 511 kW T006 ON AutoGen PSD:No 349 kW T007 ON AutoGen PSD:No 526 kW T008 ON AutoGen PSD:No 526 kW T009 ON AutoGen PSD:No 517 kW T010 ON AutoGen PSD:No 541 kW T011 ON AutoGen PSD:No 428 kW T012 ON AutoGen PSD:No 432 kW T013 ON AutoGen PSD:No 517 kW T014 ON AutoGen PSD:No 546 kW T015 ON AutoGen PSD:No 407 kW T016 ON AutoGen PSD:No 493 kW T017 ON AutoGen PSD:No 462 kW T023 OFF Standby PSD:No 0 kW T024 ON AutoGen PSD:No 432 kW T025 ON AutoGen PSD:No 548 kW T026 ON AutoGen PSD:No 348 kW T027 ON Standby PSD:No 0 kW

LVS System enables broad-band VS

SYNCWWIND

Time-series showing broad-band LVS operation in below-rated winds, then TL operation

TLG-LVS System Cost-Competitive with Type 3

Small hydraulic machines are key (low losses, low capital cost)

Voith Windrive

- **th Windrive**
• Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator converter mounted on the drive-train between main gearbox and generator **th Windrive**
• Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator
• Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power and a hydraulic circuit which recycles a large part of the power to provide variable speed on the wind turbine • Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator
• Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power to provide
va power and comparable in size to the generator and gearbox • Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power to provide
variable speed on the wind turbine
Handles all the turbine's mechanical
power and comparable in size to t
- cost

Voith Windrive

- **th Windrive**
• Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator converter mounted on the drive-train between main gearbox and generator **th Windrive**
• Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator
• Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power and a hydraulic circuit which recycles a large part of the power to provide variable speed on the wind turbine • Separate hydrodynamic torque
converter mounted on the drive-train
between main gearbox and generator
• Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power to provide
va • Two differential epicyclic gear stages
and a hydraulic circuit which recycles
a large part of the power to provide
variable speed on the wind turbine
• Handles all the turbine's mechanical
power and comparable in size to
	- power and comparable in size to the generator and gearbox
	- cost

NREL/INL Recent Research

- **EXAMIND STREL ANTISED INTELLANT RECENT RESEARCH**
• National Renewable Energy Laboratory (NREL) has current project:
• to evaluate the impacts of synchronous wind power on the grid **• Funded by the U.S. Department of Energy's Wind Energy Technology Office**
• funded by the U.S. Department of Energy's Wind Energy Technology Office
• to evaluate the impacts of synchronous wind power on the grid
• in col • **ALL MINTEL/INL Recent Research**
 Particular Stational Renewable Energy Laboratory (NREL) has current project:

• funded by the U.S. Department of Energy's Wind Energy Technology Office

• to evaluate the impacts of sy **• In the Indee of School State of School State of School State Incident Sessearch**

• funded by the U.S. Department of Energy's Wind Energy Technol

• to evaluate the impacts of synchronous wind power on the grid

• in co **NREL/I

National Renewable Energy

• funded by the U.S. Departme

• to evaluate the impacts of syr

• in collaboration with the Idahd

• includes:

• theoretical analysis based

• testing with power-hardwa • NREL/INL Recent Research**

• tional Renewable Energy Laboratory (NREL) has current proje

funded by the U.S. Department of Energy's Wind Energy Technology Offi

to evaluate the impacts of synchronous wind power on the g **EXAMPLE TRECETTL RESES**

Fional Renewable Energy Laboratory (NREL) has c

funded by the U.S. Department of Energy's Wind Energy Te

to evaluate the impacts of synchronous wind power on the g

in collaboration with the Ida vertional Renewable Energy Laboratory (NREL) has current proje

funded by the U.S. Department of Energy's Wind Energy Technology Off

to evaluate the impacts of synchronous wind power on the grid

in collaboration with the
- National Renewable Energ
• funded by the U.S. Departn
• to evaluate the impacts of s
• in collaboration with the Ida
• includes:
• testing with power-hard
• focus on ability of Type
• Test setup includes:
• 2.5 MVA /13.2
	-
	-
	- -
		-
		-
- -
- funded by the U.S. Department of Energy's Wind Energy Technology Office

 to evaluate the impacts of synchronous wind power on the grid

 in collaboration with the Idaho National Laboratory (INL)

 includes:

 theore
- to evaluate the impacts of synchronous wind power on the grid
• in collaboration with the Idaho National Laboratory (INL)
• includes:
• testing with power-hardware-in-the-loop (PHIL)
• focus on ability of Type 5 turbines
- in collaboration with the Idaho National Laboratory (INL)
• includes:
• theoretical analysis based on modelling and simulations
• testing with power-hardware-in-the-loop (PHIL)
• focus on ability of Type 5 turbines to pr • includes:
• theoretical analysis based on modelling and simulations
• testing with power-hardware-in-the-loop (PHIL)
• focus on ability of Type 5 turbines to provide system strength
Test setup includes:
• 2.5 MVA /13.2 k torque converter and torque limiting system) implemented in closed loop setup

NREL/INL Results

- -
- **WILLET ACCEL AND MINORY OF A STATE OF A STA** • **WIMPREL/INL Results**

• **From the protects against pole slip (very destructive synch generator condition)**

• allows ride-through and maintenance of synchronism in weak grids

• Type 5 torque and excitation controls mod
	-
- **Example 19 allows ride-through and maintenance of synchronism in weak grids**
• helps arrest torque oscillations during LVRT
• protects against pole slip (very destructive synch generator condition)
• allows ride-through a FORTENDING RESULTS

• Torque limiter :

• helps arrest torque oscillations during LVRT

• protects against pole slip (very destructive synch generator condition)

• allows ride-through and maintenance of synchronism in wea only around 60 Hz (unlike Type 3), making Type 5 turbine's: **EXAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE TO A THE SAMPLE TO A THE SAMPLE SERVIT THE SAMPLE STATE STADING TO SERVIT TO SAMPLE STADING TO SAMPLE STADING TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPLE TO SAMPL** Forque limiter :

• helps arrest torque oscillations during LVRT

• protects against pole slip (very destructive synch generator conc

• allows ride-through and maintenance of synchronism in weak gr
 Type 5 torque and exc • Helps arrest torque oscillations during LVRT
• protects against pole slip (very destructive synch ge
• allows ride-through and maintenance of synchronisr
• Type 5 torque and excitation controls modify the
only around 60 • Helps ariest lolder oscillations during EVRT
• protects against pole slip (very destructive synch generator condition)
• allows ride-through and maintenance of synchronism in weak grids
Type 5 torque and excitation contr • protects against pote stip (very destructive synchr generator condition)
• allows ride-through and maintenance of synchronism in weak grids
Type 5 torque and excitation controls modify the impedance response
only around
	-
	-
- -
- Type 4, both grid-following and grid-forming Fype 5 torque and excitation controls modify the imped

only around 60 Hz (unlike Type 3), making Type 5 turb

• stability properties easy to interpret and predict

• risk of high frequency resonances much reduced

These b
	-

UCD Recent Research

-
- **EL ED LANGER CONSERVERT SEL ESSECT DEATH CONSERVERT SERVICE S**
- **EL CO Recent Research**
• Full hydrostatic Type 5 turbines have been focus
• Predominantly how they interact at scale with grid
• Electro-mechanical models of full hydrostatic turbines & their coverages have been developed **ELECTREE CONSERVERT CON** systems have been developed, and compared with Type 3 and 4 **Example 19 CO Recent Research**
• Full hydrostatic Type 5 turbines have been focus
• Predominantly how they interact at scale with grid
• Electro-mechanical models of full hydrostatic turbines & their control
systems have Full hydrostatic Type 5 turbines have been focus

Predominantly how they interact at scale with grid

Electro-mechanical models of full hydrostatic turbines & their control

systems have been developed, and compared with T Full hydrostatic Type 5 turbines have been focus

Predominantly how they interact at scale with grid

Electro-mechanical models of full hydrostatic turbines & their control

systems have been developed, and compared with T • Electro-mechanical models of full hydrostatic turbines & their control
systems have been developed, and compared with Type 3 and 4
Ability to meet grid codes and provide system services, such as fast
frequency response,
- frequency response, has been investigated: **Energy Systems** have been developed, and compared with Type 3 and 4 Ability to meet grid codes and provide system services, such as fast frequency response, has been investigated:

• generator has synchronous inertia, whe
	-
	- conventional synchronous power systems, because turbine inertia decoupled
	-
	- "flywheel" and can be extracted for fast frequency response

UCD Results

Taken together, the red
line with diamonds
shows Type 5's inertia, line with diamonds shows Type 5's inertia, accumulator and flywheel energy to be better than the blue line (conventional synchronous systems). \sum_{\pm}^{∞} 49.4 Also applicable to accumulator and
flywheel energy
improve the response
to be better than the
blue line (conventional
synchronous systems).
Also applicable to
SyncWind and Windrive
systems. systems.

General Features of Type 5 Grid-forming Turbines **Ceneral
• Features in common:**
• no inverters **General I

Type 5 Grid-form Contains Contains Contains:**

• no inverters

• mechanical VS so turbine spectron created in lacked to **General Features of

Type 5 Grid-forming Turbine**

Features in common:

• mechanical VS so turbine speed can vary

• generator speed is locked to grid frequency

— constant sensuring speed radiuses dijus traje terms for **General Features of

Type 5 Grid-forming Turbines**

Features in common:

• no inverters

• generator speed is locked to grid frequency

• constant generator speed reduces drive-train torque trans

(no generator accelerati

- -
	-
	-
- **Type 5 Grid-forming Turbines**

 no inverters

 mechanical VS so turbine speed can vary

 generator speed is locked to grid frequency

 constant generator speed reduces drive-train torque transients

(no generator ac (no generator accelerations hence no inertial term) • Features in common:
• no inverters
• mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-train torque transie
(no generator accelerations hence n • no inverters
• mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-tra
• (no generator accelerations hence no inert
Distinguishing features of t • mechanical VS so turbine speed can vary
• generator speed is locked to grid frequency
• constant generator speed reduces drive-train torque transi
(no generator accelerations hence no inertial term)
Distinguishing featur • generator speed is locked to grid frequency

• generator speed is locked to grid frequency

• constant generator speed reduces drive-train torque transients

(no generator accelerations hence no inertial term)

Distingui • constant generator speed is looked to gila inequently

• constant generator speed reduces drive-train torque transi

(no generator accelerations hence no inertial term)

Distinguishing features of the three candidates:

- -
	-
	-
	-

Type 5 features and effects on LCOE Type 5 features and effects on LCOE
based on NREL model of LCOE (Stehly et al) – details in paper

Conclusions

-
- **Conclusions**
• Degradation of system strength because of IBRs is a major concern
• Early examples of sync-con mandates have occurred, likely to increase • Degradation of system strength because of IBRs is a major concern
• Early examples of sync-con mandates have occurred, likely to increase
with costs being imposed on the wind and solar industries. Based on
South Australi with costs being imposed on the wind and solar industries. Based on South Australia figures this could be a 10% LCOE increase • Degradation of system strength because of IBRs is a major concern
• Early examples of sync-con mandates have occurred, likely to increase
with costs being imposed on the wind and solar industries. Based on
South Australi • Degradation of system strength because of IBRs is a major con
• Early examples of sync-con mandates have occurred, likely to in
with costs being imposed on the wind and solar industries. Bas
South Australia figures this begradation or system strength because of IBRs is a major concern
Farly examples of sync-con mandates have occurred, likely to increase
with costs being imposed on the wind and solar industries. Based on
South Australia fi Early examples of sync-con mandates have occurred, likely to increase
vith costs being imposed on the wind and solar industries. Based on
South Australia figures this could be a 10% LCOE increase
Three Type 5 wind turbine
- developed with different track records and cost implications vith costs being imposed on the wind and solar industries. Based on

South Australia figures this could be a 10% LCOE increase

Three Type 5 wind turbine systems, inherently grid-forming, have been

leveloped with differen • Three Type 5 wind turbine systems, inherently grid-forming, developed with different track records and cost implications • NREL, INL, UCD and others are studying these options: • Full hydrostatic is being developed to ad
- -
	-
	-
-